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Abstract. The central quantity in the theory of transport for Hamiltonian systems, and in
particular the area-preserving twist maps, is the action of rotational periodic orbits. Usually
this is a complicated discontinuous function of two arguments: some perturbation parameter
and a rational rotation numbet/n, denoted byA(k; m/n). We applied the idea of modular
smoothing to this complicated fractal. Our main result is that all the information contained in
the fractal A(k; m/n) can be retrieved from a set of continuous or smooth functions of one
variable.

1. Introduction

One of the most exciting and important problems in the modern theory and applications of
Hamiltonian dynamical systems is a development of detailed and computationally effective
theory of transport in phase space [1, 2]. Many applications of Hamiltonian dynamics,
ranging from celestial mechanics to chemistry, require such detailed description of the
transport. Let us list just a few historically important examples. In the design of
supercolliders or magnetic confinement systems [3] a good understanding of the stability
and transport in nonlinear Hamiltonian systems would lead to a substantial improvement
of efficiency. Also, in fluid mechanics, this knowledge is essential for understanding
mixing flows [4]. Calculation of rates and probabilities of chemical reactions, which can
be formulated as Hamiltonian systems, is actually a problem in the transport theory [5].
In many problems in astronomy and astrophysics, such as the gaps in the distribution of
asteroids or the structure of the rings of Neptune, Hamiltonian stability and transport is
central [6].

Typical Hamiltonian systems are neither completely integrable nor strongly chaotic,
and for such systems the study of transport properties is particularly difficult [1]. The
main problem is that for mixed systems, the regular and chaotic motions coexist on
intertwined domains in the phase space. The boundary between the two qualitatively
different behaviours, and consequently all other important quantities in the transport theory
are exceedingly complicated fractals. The method of modular smoothing [7] has been
developed in order to encode these fractal functions in terms of much simpler, continuous
and smooth functions. In this paper we shall extend the method of modular smoothing to
demonstrate that the central object in the theory of twist maps and the transport theory,
namely the action along various periodic orbits, although being a complicated fractal

§ E-mail address: majab@rudjer.ff.bg.ac.yu
| E-mail address: mudrinic@shiva.phy.bg.ac.yu

0305-4470/98/081875+18$19.5@¢) 1998 IOP Publishing Ltd 1875



1876 N Buri¢ and M Mudrint

function of two arguments, can be approximated using only a few continuous and smooth
functions of one argument. This paper is organized as follows. Section 2 serves to
recapitulate the necessary definitions and fix the notation. In section 3 we briefly illustrate

the main idea of the method of modular smoothing. Sections 4 and 5 contain our main results
concerning the modular smoothing of the action. In section 6 we present an application
of the new algorithm for calculating the action and illustrate various ways of reducing the

errors. In section 7 we discuss potential applications of the modular smoothing method to
calculate the flux and areas of resonances, which are the objects of direct interest in the
theory of transport. Our results are summarized and a list of problems is given in section 7.

2. The basic definitions and notation

Most typical features of the fractal phase space are already exhibited by the systems with
two degrees of freedom, which, after reduction on an energy hypersurface, are equivalent
to a one-parameter family of nonautonomous Hamiltonian systems with periodic time
dependence and with one degree of freedom. By taking stroboscopic plots at=tirBei

the latter are reduced to area-preserving (symplectic) maps of the cylinder. In addition, the
momentum coordinate for such maps is usually a monotonic function of the average velocity
on an orbit, which is called the twist property of the map. The most studied example of
these maps is the Taylor—Chirikov standard map (SM), which is given by the following
equations:

k.
Pi+1= Ppr — P sin(2r q;)
T

T: (1)

Gi+1 = G + Pr41 g €S p eR

wherek is the perturbation parameter ands an integer. It is generally believed that the
SM contains all essential features related to the fractal structure of the chaotic boundary.
Our results will be illustrated using this system. The SM represents a symplectic (canonical)
transformation of the phase space with an additional property that is given by a generating
function S(g,, g:+1) by the formulae:

pr = —098/9q; P41 = 08/0q141 2

where

k
S(Gr, qi+1) = (@ — qr+)?/2 + 4.2 C0%274). ®)

Area-preserving twist maps can always be generated by equations (2) and the corresponding
generating functionS(q,, ¢;+1) [1]. The generation function is used to define action
functionals on sequences of real numbers. Various regular orbits, such as periodic,
qguasiperiodic and homoclinic orbits of the map are given by stationary points of the
corresponding action functionals. The periodic and quasiperiodic orbits are parametrized by
the frequency (or the rotation number) defined as follows

T(q)— g
vi= lim 1@ 74 (4)
i—00 1
whereTi(g) is theith iteration of the horizontal component of the lift of the map (1). We
usedg instead ofg to indicate that in definition (4) we have the lift of the map Bn< R
instead of the map itself which acts &nx R. The orbits can all be calculated using the
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periodic actionA(k; m/n) whose stationary points are the periodic orbits with the rational
frequencyv = m/n. It is defined on the sequencesofeal as follows

t=n—1

Al m/n)(xo, x1, . Xn-1) = D S, X141 L =votm- ()
=0

There are (at least one) minimum and minimax stationary value for for egbh
denotedAmin(k; m/n) and Aminmax(k; m/n) which correspond to the so-called minimum
and minimax periodic orbits. In what follows we shall frequently omit the subscript min or
max and denote the stationary points of (5) simplyAi; m/n). The quasiperiodic orbits
are stationary points of the corresponding action functional, defined on infinite sequences
of reals, but in practical calculations this action and the orbits are calculated as limits of
the periodic action and periodic orbits.

Let us briefly recapitulate definitions of the critical values of the paramigteglative
to the periodic and quasiperiodic orbits, since these will be needed later. The standard
map, fork = 0, has regular orbits with any real frequency, which go around the cylinder.
Such orbits are called rotational. Orbits with ratiomak m/n are periodic with period.
There is a complicated pattern of bifurcations of these periodic orbits as the paraneeter
increased. All stable rotating periodic orbits bifurcate into unstable at some critical value
of the parametek.(m/n), characteristic of the particular orbit. The functidp(m/n) is
called the fractal diagram for the corresponding system [8]. It is defined at rationales, and
is a discontinuous fractal function.

At moderate values of the perturbation paramétet O there are quasiperiodic orbits
for every irrationalv. Depending on the frequency and the valug o& quasiperiodic orbit
can fill an invariant circle or an invariant set with many holes. The closure of the latter
orbit is a cantor set, which is called the cantorus [9]. On the other hand, there are also
many invariant circles, filled by quasiperiodic orbits, which are smooth perturbations of the
invariant circles of the integrable system with the same frequencies. These tori are called
KAM tori, due to Kolmogorov, Arnold and Moser who first proved their existence in the
now celebrated KAM theorems [10]. Usually, upon increasing the perturbation parameter
some of the KAM tori will bifurcate into cantori with the same frequencies [11]. Also, in
some systems the invariant circles can reappear and disappear as the parameter is increased
[12].

Whether a quasiperiodic orbit fills a KAM torus depends in a very intricate way on
its frequency and the perturbati@an This dependence is described by the critical function
K (v), which is defined as follows [13]. Its value at an irratiomails the smallest value of
the perturbation parametérat which there is no KAM torus with that. This function
also has a very complicated fractal structure. It is zero and continuous at rationales and has
a nonzero value at most irrationals, where it is discontinuous.

Similarly the periodic actiom (k; m/n) is a discontinuous fractal function of the two
arguments. However, we shall show that the information containeti(inm/n) can be
retrived from just a few continuous and smooth functions of one variable.

3. The idea of modular smoothing

The main problem with most of the existing techniques for numerical calculation of action is
that they rely on the calculation of the corresponding periodic orbits. Each periodic orbit has
to be calculated separately and without the knowledge of other distant orbits. Attaso

[14] developed a method to express long periodic orbits via the short ones, however, their
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method works for hyperbolic systems which are not typical in Hamiltonian dynamics. The
calculations of periodic orbits are usually based on some form of the Newton method, and are
relatively easy only in the case of the orbits with small periods [15]. Recently Vrahatis [16]
proposed a procedure based on a generalized bisection method. In any case the calculations
of long periodic orbits close to the bifurcation points are quite time consuming, and the
efficiency of the methods depends on special techniques to determine the good initial guess
for the Newton method [17], or a good choice of the initial characteristic polihedra [16].
For example, although renormalization group methods have produced some strong results
they are still local, and difficult to apply on realistic systems [18]. However, a few years
ago the method of modular smoothing for an efficient and relatively accurate calculations
of fractal objects in Hamiltonian mechanics was reported [7, 19]. The method is based on
the transformation properties of these objects under the action of the unimodular group on
the frequencies. It has been applied for the calculation of the critical functions [7], fractal
diagrams [21] and on the KAM tori [20]. Also, the method has been used to analyse the
typical fractal properties of the critical functions [22] and the fractal diagram [23]. We shall
only briefly recapitulate the basic idea and the main results.

Detailed analysis of the perturbation expansion suggests that the transformation
properties of, for exampl& (v), can be described by a sequence of successively smoother
functions L, (v) of the critical function and its transformations, witly(v) = —In K (v).

The method is based on the cancellation of the singularitiels; (n) and L; (Mv), where
M is an element of the unimodular group

My — av+b ©)
cv+d
with a, b, ¢ andd integers satisfyingad — bc| = 1.
The functionLg has infinite singularities at all rationals, but the functibndefined for
the standard map by the following formula:

Li(v) = Lo(v) —vLo(V") (7)

wherev' = v~! — {v~1} is the Gauss transform af, which is continuous everywhere
and bounded (except at zero and infinity). An analogous continuous furigtieyin) =
Ink.(m/n) — (m/n)Ink.(m’/n’) describes the fractal diagrakp(m/n). Here{v} stands for
the integer part of. Notice that the critical function of the standard map is invariant under
integer translations of the frequency, so tlig(v) = Lo(v — {v}) for anyv € R. In this
paper we shall always denote the Gauss transformation of the frequesroy /n by v’ or
m'/n’. The function

Ly(w)=@w+DLi(v+1) —vLi(v) (8)

seems to be continuously differentiable, etc. Furthermore, values of the fungtiphs- 0

at rationals can be calculated using the perturbation expansion of a finite order. For example,
for L1(m/n) we need perturbation expansion of the orderA smooth interpolatiorL1app
through only a few points.;(m/n) then allows one to reconstruct the original fractal
function with a bounded maximal error of just a few per cent. In summary, the method of
modular smoothing enables one to approximate a discontinuous fractal object in Hamiltonian
dynamics by continuous and smooth functions.

4. Modular smoothing of actions

We shall now present a series of mainly numerically supported arguments which lead to our
main conclusion, stated as followAlthoughA (k; m/n) is a complicated fractal function it
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(km/n)

A4
min

Figure 1. The action of minimizing periodic orbitd min(k; m/n).

has well-defined transformation properties under the action of the Gauss transformation on
m/n, accompanied by a suitable changekn— k' = k’(k; m/n). These transformation
properties are expressible in terms of continuous and smooth functions, and determine
A(k;m/n) completely So, in order to approximatei(k; m/n) quite accurately and
efficiently for any combination ok and m/n one needs to knowA at only relatively

few values ofk andm/n, for smalln.

The actionA(k; m/n) for the SM is illustrated in figure 1. Figure 2 gives various
sections of figure 1. The figures were obtained by tedious numerical calculations of periodic
orbits at various values df. There are actuallymin(k; m/n) and Aminmax(k; m/n), but all
our conclusions will be the same for both. In what follows we shall illustrate our results
using Amin(k; m/n) and denote it simply by (k; m/n). It is a complicated fractal object
with a nontrivial self-similar structure. At zero perturbatidrO; m/n) is also fractal but
can be calculated analytically, since the map is integrabke-a0. However, fork # 0 no
simple smooth (or continuous) approximation is possible.

Let us first examineA(k; m/n) along the linesn/n = constant. These functions are
presented in figure 3A(k; m/n = constant is a smooth monotonic function @& which
can be approximated by, let us say, polynomials of a certain fixed degree. However, the
approximating polynomials have coefficients which depend in a discontinuous fractal way
onm/n, so thatA(k; m/n) is not a simple product of a fractal and a smooth function.

Our guiding idea is to use the singularities of the functibtk; m/n) at m/n and the
Gauss transformatiom’/n’ in order to obtain functions with weaker singularities. The
problem is to find an appropriate relation between the values of the first argunseich
that A(k; m/n) and A(k’; m’/n’) are, at least, continuously related.

In the case of the zero perturbation, since the map is integrable, the actiemgnof
andm’/n’ orbits should be related by a smooth function. The fractal functié® m/n),
which can be calculated analytically, and is given by the following simple formula:

I’I’l2
AO;m/n) = o )

should be smoothly related to the functiaO; m’/»n’). Indeed, the ratio betweet(0; m /n)
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and A(0; m/n) is given by the following function:

A(O; m/n) _m m/n (m/n)3
AQO;m'/n")y  m'm'/n’ (1 — aym/n)?

wherea; is the first coefficient in the continued fraction expansion of the ratienal =
[0,a1,az,...a4]. This is a smooth function except for the singularitiesnatn = 1/1,
[ =1,2.... So our problem is easily solved in the case of zero perturbation. Guided by
this result we shall analyse the ratio betwe&tk; m/n) and A(k’; m'/n’) whenk £ 0.
However, the proper relation betwekrandk’ still has to be found.

Motivated by the common belief that the map should behave qualitatively the same in a
neighbourhood of any periodic orbit at the corresponding crificak /n), we first consider
the valuesA (k.(m/n); m/n) on the fractal curvé,.(m/n). This is also a fractal function of
m/n, presented in figure 4. Furthermore, we know thdin/n) andk.(m’/n’) are related
by the continuous functiof (m/n). The numerical evidence shows that the following ratio:

A(kc(m/n); m/n)
Ake(m'[n"); m'[n")
is a piecewise continuous function ef/» (this is illustrated in figure 5). As in the case
of k = 0, the discontinuities at/Z, / = 1,2... are only due to the use of the Gauss
transformation in definition (11).
Thus, an approximation of the fractakk.(m/n); m/n) is given by only a few values,
which are needed to interpolate the continuous branchegifm/n); m/n), and by the

(10)

m
=" g(m/n) =
m

= J(k.(m/n); m/n) (11)
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Figure 3. The actionsA (k; m/n = constant of minimum and minimax orbits as functions bf
for several fixedn/n.

continuous function;(m/n). The latter can also be approximated by a few values of
k.(m/n) for smalln.
In order to proceed further we shall consider the ratio:

A(k; m/n) ', 'yt
Ak ) =Jk,k';m/n,m'/n) (12)
as a function of four independent argumentsk’, m/n andm’/n’. As we have seen, if
m'/n’ is the Gauss transformation ef/n, and ifk = k.(m/n) andk’ = k.(m'/n’) this
expression is a piecewise continuous functiomgf:. This is also true whek = 0 = k'.
We expect thatn’/n’ should always be the Gauss transformmofn, and would like to
find out whether there are other combinationskaind &’ = k’(m/n) which would render
Jk,kK'(m/n); m/n,m'/n'(m/n)) a continuous or smooth function ef/n.

The following observation is crucial for further analysis. The expression/n) =
Ink.(m/n) — (m/n)Ink.(m’/n’) (as well as the analogous one fbi(v)) is defined using
the critical values:k.(m/n) and k.(m’/n’). However,l;(m/n) is simply related to the
same expression in whidh (m/n) andk.(m’/n’) are replaced byk.(m/n) andak.(m'/n’)
respectively, where is an arbitrary positive real number. The relation is:

li,(m/n) = In(ak.(m/n)) — (m/n) In(ak.(m'/n")) = (L —m/n)Ina + ly(m/n). (13)

This indicates thatA (ak.(m/n); m/n) and A(ak.(m’/n’); m’/n’) might also be related
by a simple relation. Indeed, numerical evidence shows that the function of two arguments:
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k andm/n defined by the following relation:

kc / /

J(k;m/n) =Tk, (m—/n)k;m/n (14)
ke(m/n)

is certainly a piecewise continuous function mfn along any fractal curvek(m/n) =

ak.(m/n). Thus, we obtain a one-parameter family of functions of one varidple/n),

defined in the following equation, which completely describes the fratta] m/n)

Jo(m/n) = J(ak.(m/n); m/n). (15)

The functionsJ, (m/n), same asy(m/n), are continuous except at the singularities at each
m/n=1/1,1=1,2... due to the Gauss transformation used in their definition.

These functions on the interv(a%, 1) are illustrated in figure 6 for various values @f
Note that the fractal function:
ke(m'/n’)
ke(m/n)
which appears in definition (14) can be calculated from the continuous fungtiarnn).

In what followsk’(k; m/n) will always denote the function (16).

Thus, we see tha#A(k; m/n) is continuously related toA(k'(k; m/n); m’'/n’). The
strongest singularity of the action at arbitra¢y, m/n) has been cancelled out by the
singularity of A at (k'(k; m/n), m’/n’). This is precisely the idea of the modular smoothing
as applied on the actiond(k; m/n). The next step in the method of modular smoothing
would be to consider the transformation properties of the piecewise continuous functions
J.(m/n), in order to remove the singularities in the first derivatives. However, at this stage,

k' (k;m/n) = (16)
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later purposes we also present the graply ef mn’/nm’ (cross).

due to insufficient numerical accuracy, we shall not proceed any further with the modular
smoothing programme. Instead, in order to approximate the frac¢talm /n) we shall use
only the piecewise continuous functiotig(m /n).

The continuous branches of the functiohgm/n), for each fixeda, at the intervals
(1/1,1/14+1),1=1,2... are all similar. Numerical evidence indicates that they all have
singularities in the first derivatives. These are clearly seen only at the resonances which
are dominant in the corresponding intervals. However, the relation between the different
branches of/, (m/n), although probably smooth, is not given only by the simple rescaling
of the argumenin/n.

The same structure of the discontinuities in the functign®:/n) and the graph of the
Gauss transformation, illustrated in figure 5, suggests another useful representation of these
functions. Figure 7 presents ratios

J(akc(m/n); m/n)
(mn’/nm’)

(17)

as functions o = mn’/nm’, for several values af. The singularities in the first derivative

are illustrated better in this representation than in figures 5 and 6. Each of the continuous
branches of the functiod, (m/n), for any fixeda, can be approximated by a polynomial

in g = mn’/nm’ of a low degree. Furthermore, there is a simple rescaling relation of the
argumentg so that all continuous branches of ofgm/n) can be presented on the single
interval, let us say(%, 1). However, this change of argument is not enough to describe the
relation between the continuous branches, and that is expressed by the fact that also the
coefficients of these polynomials depend on the interval. This is illustrated in figure 8. The
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Figure 6. The functionsJ,(m/n) on the interval(%,l) for the following values ofa =
0.2,0.5,1.0,1.5.

curves represented by crosses give the numerically calculated fungtien'n), a = 1.

The curves represented by circles give the approximatiah eft the interval(%, 1) by the
polynomial of the fifth degree ig, and the polynomials which are obtained from this one

by the substitution of the argumept which describes the rescaling of the interval. The
fact that crosses and circles do not coincide (except/foon (%, 1) and its polynomial
approximation) shows that the coefficients of the polynomial approximations also depend
on the interval. As was pointed out, the relation between the different branches of one of the
functions J,(m/n) is not trivial. However, one can use the approximation by polynomials

of a fixed low degree, and extrapolate the dependence of the coefficients on the interval by
extrapolating from the values of the coefficients at the first few intervals.

In our sample calculations, described in the next section, we used the simplest
approximation ofJ,/g by a linear function: J,/g =~ A,(n)g + B,(n) on each interval
(1/1,1/1+1). The coefficientsA1(I) and B1(/) are given in figure 9, and their values can
be extrapolated from the values at the first few intervals. Even such a crude approximation
gave results with a quite small error in the approximated valued (&f m/n) at many
frequencies and for a range bfup tok < 1.5.

5. The modular smoothing algorithm for the calculation of actions

We shall now describe an algorithm for approximatifi¢ko; mo/ng) at an arbitrary point
(ko; mo/no) by using only smooth functions, and a small number of initial, directly
calculated, values of the action at orbits with small period. We shall first develop the
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general procedure and then describe our sample calculations with specific details. Let us
suppose that we have calculatagk; m/n) at the followingr x s grid of points:

(k,,m,/nj) i=1...r ]215 (18)

wherem;/n; are the firstt numbers in the Farey tree, and whérés always of the form:
ki = a;k.(m;/n;) with arbitraryq;, i = 1...r. We shall also need (k; m/n) at the Gauss
transformation ofm;/n; and at the corresponding= k'(k;; m;/n;), but these points are
already in the grid. Note that we need to know the values of the fractal dialgram/ ;).
Generally in the following procedure we shall have to know the fractal diagram at arbitrary
m/n, which can be approximated from an interpolation throtigh; /n;).

Before we proceed with the algorithm let us recall that the functifris:/n) have an
infinite number of continuous branches defined on the interidals 1/1+1),1 =1,2....
In principle, a knowledge of a certain number of points on each of these branches is required
in order to obtain an approximation df (m/n) on the whole interva(0, 1). However, due
to the self-similarity of the continuous branches ffm/n) on different intervals, which
we shall need to know only approximately, only a finite and small number of points will
be needed. For example, as we shall see, the linear approximations with extrapolated
coefficients gave excellent results. Here we want to stress again that only quite a small
number of input values\(a;k.(m;/n;); m;/n;) are needed.

The algorithm uses the set ofx r values of the action as input, and is split into two
parts. In the first part of the algorithm we use only the input values @£ m /n) to obtain
r smooth approximationg. " (m/n) of r functionsJ, (m/n). For example, the following
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1 3 4 L 6 7 0 1 4 7 8
54 5 04 - 04
/vm-—-—--‘v v,
o / . 03 Joa
S\ 34 / 3 Q\ 1 1%
~ < \\
01 <401
) / 1? ™
004 400
14 11 \
v T T T T 21 ; T T T . , ; o
1 2 3 4 5 -] 7 1 2 3 4 - 6 7

Figure 9. The coefficientsA1 (1), B1(!), I = 1, 2. .. in the linear approximations of the branches
of J1(g)/g.

values:
A(kc(my/n1);my/na), ..., Atke(mg/ng); mg/ng)
A(kc(my/nh); my/ny), ..., Alke(m/n); m)/n))
give J(k.(m/n); m/n) at the pointsimy/nq, ...my/ns. These can be interpolated by some
smooth function/2P(k.(m/n); m/n). Similarly, the following points:
A(aikc(mi/n1);ma/na), ..., Alaike(mg/ng); mg/ny)
A(aikc(m'y/ny); m'y/nY), ..., Aaik.(m),/n}); m/n))
with a; # 1 give J,, (m/n) at the pointsimi/na, ..., mg/n,;. These can also be interpolated
by some other smooth functiaf™ (m /n).

In this way we obtain- smooth functions/2*(m/n), i = 1...,r. We can add to
these functions one more which can be calculated exactly, namely the fungtionm /n),

(19)

(20)
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so that we end up witlr + 1 smooth functions ofn/n. This part of the algorithm does
not depend omng/no. Once we have interpolatefi(a;k.(m;/n;); m;/n;) we can use the
functions J2° to calculate the action at any; m/n).

In order to continue to the second part of the algorithm we now noteAtigtmg/no)

is a smooth function ok, which we shall approximate by a polynomial of order
A(k; mo/no) = bo(mo/no) + b1(mo/no)k - - + by (mo/no)k” + - --. (21)

The coefficients; (m/n) are fractal functions ofz/n, but they can be approximately
calculated at anym/n in terms of smooth functions. In order to calculate
bo(mo/no), ..., b.(mg/ng) we use the values:

A(aik.(mo/no); mo/no), ..., A(a,41k.(mo/no); mo/no) (22)

which are not known in advance but can be approximated from various values of the smooth
functions:

JERm/n), ..., J2Pm/n). (23)

The procedure is as follows. Expredsa;k.(mo/no); mo/no), for eachi = 1,...,r, in
terms of A(a;k.(m&/nd); md/nd) and an appropriate sequence of values of the functions

J;pp using the sequence of Gauss transformations. The formula is as follows

A(aik.(mo/no); mo/no) ~ Aapplaik.(mo/no); mo/no)
= J2PP(mo/no) A(ajk.(mo/ng); mo/ng)
= o= Jmo/no) ... J2Pmy T /n§ Y Alaike(mG/nd); m§ /nf). (24)

The sequence of transformations/ng — my/ny — mg/nfy — mé/nd is the sequence
of Gauss transformations leading frony/ng up to one of thes initial m/n at which the
values of the action are calculated directly, for exampfg'ng = 1.

These numbersl app(a;kc(mo/no); mo/no), i = 1, ..., r together withA(0; mo/ng) =
bo(mo/ng) are used to approximate the coefficientdii(mo/no), ..., b,(mo/ng) by
bPP(mo/no), . . ., bi™(mo/no). The latter are the solutions of the following setsofi 1
linear algebraic equations:

Aapplaike(mo/no); mo/no) = by (mo/no) + b3 (mo/no)aik.(mo/no)

+ -+ 4 bIPP(mo/ no) (ajkc(mo/no)" (25)
wherei =1,...,r +1 anda,;; =0.
We can now plug the numbet§™(mo/no), . . ., bi*(mo/no) back into the polynomial

(21) and finally calculate it ak = ko, which gives the desired approximate value of
A(k; m/n) at (ko; mo/ng). In order to approximatel (k; m/n) at any other point only the
second part of the algorithm has to be repeated, this time for the new @ginto/no).

The algorithm which we have just explained can be easily programmed on a computer.
As input it requires- x s values ofA(k; m/n) at specified point$a;k.(m;/n;); m;/n;), and
s values of the fractal diagrarh.(m;/n;) which are needed to interpolatgm/n). These
require explicit calculations of only periodic orbits, with small period, at prescribed
values of the parametdr. As the output it gives an approximate value of the action
A(k; m/n) for any value ofk andm/n. At the beginning of the procedure a subroutine for
interpolation of continuous functions of one variable has to be applied in order to obtain
the functionsJs™ andliapp The subroutine has to be invoked only once for each desired
function, and these smooth interpolations can then be used to approxirtiate:/»n) at
any (k; m/n). The interpolation algorithm could be any of the standard subroutines and
the choice is not essential for our arguments. What is essential is that we have reduced the
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problem of interpolating a fractal functioti(k, m/n) is replaced by the simple problem of
interpolating only a few continuous or smooth functions of one variable.

6. Calculations and errors

The modular smoothing algorithm was tested by comparing the values of the action
calculated directly, using the numerical calculations of periodic orbits, with the values of
the action obtained by the algorithm. We shall first illustrate the calculations which use only
the most simple approximations of the involved functions. Such crude approximations lead
to the results with an error in the values of action of about 5% on the set of all frequencies
up to the eighth level in the Farey tree. We shall then discuss the main sources of errors
and show how the accuracy can be improved.

In all our calculations we needed the fractal diagrarn/n), so we first obtained an
approximation of the functiofy (m/n). Actually, we used an approximation of the function
I,(m/n), which was obtained earlier [7], using a finite perturbation expansion of order
n=28.

In the first step of the algorithm we had to obtain the smooth approximafiiien/n).

Here we used the representation in terms of the varigltemn’/nm’, discussed at the end
of the last section, and the linear approximations. In order to obtain the approximations
J@®(m/n) we needed to calculate numerically only the periodic orbits with frequencies

mj/n; = 3,2, % ... for values ofk equal toa;k.(m;/n;) wherea; = 1, 1.
Furthermore, each/(k;m/n = constant as a function ofk for fixed m/n is

approximated over a large interval of valueskdby a polynomial of the second order. The
system of the three linear equations for the coefficients of the polynomial approximation
were solved algebraically and the solutions were expressed in terms of values of the functions
T a=011

We then applied the algorithm to calculadgk; m/n) at all points(a;k.(m;/n;); m;/n;)
wherem;/n; were all rationals up to and including the eighth level of the Farey tree, and
a; = 0.2,0.5,0.7. These values are compared with direct calculations(éf m /n) through
numerical computations of the periodic orbits. The errors are illustrated in figure 10.

Figure 10 indicates the main sources of errors. First, the continuous fundtiongn)
are approximated by smooth (very simple) functions, so that the singularities in the first
derivative are neglected. This is the most obvious source of errors, near and at the dominant
resonance inside each of the intervelgl, 1/1+ 1); [ =1, 2, .... This error is inherent to
the method of modular smoothing. Other sources of errors, which we mention below, can
be reduced by applying finer approximations of various continuous and smooth functions,
which have to be approximated. For example, each continuous branéh(©f for any
fixed a, significantly departs from the linear approximatiorgas> oo, which corresponds to
m/n approaching the right endpoint of the corresponding interval. Consequently the errors
are increased as/n approaches the resonances of the foprh 1= 1, 2, .. .. Furthermore,
the coefficients of the linear approximations are extrapolated from the first few values, so
that we expect larger errors at frequencies which have a large continued fraction coefficient,
which corresponds to higher-order resonances close to the most dominant resonances of
lower orders. Finally, the smooth functioA(k; m/n = fixed) is approximated by a
polynomial atk = 0 of only the second order ik. All these errors are larger at
larger values ofk, but they can be reduced by taking the polynomial approximations of
higher orders. Also, if one is interested in the valuesAak; m/n) for larger k, then,
instead of expansion (21) & = 0, an expansion at, let us say,= 1 would be more
appropriate.
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Figure 10. The figure represents the ratio betwedrnk; m/n) calculated by numerical
calculation A, of periodic orbits and by applying the algorithm of modular smoothityg .
The error is of the order of a few per cent.

7. Calculations of the flux and the areas of resonances

We have seen that the crude approximations used in section 6 gave an error of about a few
per cent in the values of the action for the minimal periodic orbits. Calculations of the
minimax action with the same type of approximations give the errors of the same order.
Once the actions have been calculated these results should be used to compute the flux and
the area of resonances, which are the quantities of direct interest in the transport theory.

The flux and the areas are given as differences of actions for minimum and minimax
periodic orbits which are used to calculate the partial barriers and separatrices, and are also
complicated fractals. As is indicated in figure 4, the actions of minimum and minimax
periodic orbits with the same frequency are of the same order, so that their difference is
usually quite small. An error of a few per cent in the actions renders an error of at least a
few hundred per cent in the flux.

To achieve a reasonable accuracy of the calculations of the flux one could either improve
the accuracy of the action calculations or try to smooth out the singularities directly in the
flux, as it is done for the actions. Numerical evidence partially indicates that the smoothing
of the flux F'(k; m/n) could be done in the same way as for the actions, that is, the ratio
of the flux atak.(m/n) and m/n and atak.(m’/n’) and m’/n’ seems to be piecewise
continuous (see figure 11). However, since the values of the flux are quite small, the ratio
of the two small values is rather sensitive to the errors in the calculations of the numerator
and denominator. The numerical accuracy of our computations was not enough to render
any definite results in this direction.
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Figure 11. (a) The flux at the critical values of the minimizing periodic orbit amj the ratio
of the flux atm/n andm’/n’.

8. Summary and discussion

In this paper we presented a nontrivial extension of the method of modular smoothing
which enables one to calculate the action of the rotational periodic odiitsm/n)
relatively effectively and accurately. The main result is the algorithm for interpolation
of the discontinuous fractal functioA (k; m/n) which requires interpolating only a few
continuous or smooth functions of one variable. The algorithm is based on the fact that the
ratio of actions7 (k, k’; m/n'm’/n’), given by (12), gives continuous or smooth functions

of m/n if m'/n’ is the Gauss transform ef/n andk = ak.(m/n) andk’ = ak.(m'/n’),

for any fixeda.

We have used the action at frequencies related by the Gauss transformation in order
to smooth out only the strongest singularities, and obtain piecewise continuous functions.
Numerical evidence indicates that the functiopgn/n) are not smooth (except far= 0),
so that even better approximations would be obtained if the singularities in the first derivative
of J,(m/n) could be cancelled out by some modular transformation. Further research in this
direction requires extremely accurate calculations of long periodic orbits in a neighbourhood
of the strongest resonances, which is a difficult numerical problem.

The algorithm described in section 4 can be improved in many ways, which, however,
are not crucial in this paper. We shall mention only a couple of important possibilities.
First, one should adopt the most suitable interpolation algorithm to obtain the fun(lﬁEﬂﬂs
andliapp In our sample calculations the approximatioif€® were obtained by rewriting
J.(m/n)/g as a functions of(m/n) = mn’/n'm, which made these functions almost linear
and vary easy to interpolate and extrapolate the coefficients. This requires only a few input
values of the action. Also we used the smooth approximation of the fungtietyn),
which was obtained earlier using some prior knowledge of the type of singularities. This
is indeed not essential, and one could use just the piecewise linear interpolation to obtain
l1app

Our results are presented for the action along the minimum periodic eritsn/n) =
Amin(k; m/n), but the same conclusions are true fotk; m/n) = Aminmaxdk; m/n). Once
the actions are calculated at sufficiently many poiktsn/n) using the algorithm of modular
smoothing, one would like to calculate the flux and the areas of resonances, and thus obtain
all necessary elements for the Markov model of the transport in phase space. To achieve a
reasonable accuracy of the calculated values of the flux one needs very accurate calculations
of the actions. However, due to the difficulties of the numerical calculations of the flux, we
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cannot say anything definite about the modular smoothing as the method that could provide
us with accurate calculations of the flux and the areas of the resonances at many frequencies
and various values of the perturbation, which would be the ultimate goal of the theory.

Our investigations were carried out using the standard map as a typical system. The
idea of modular smoothing and in particular its applications to the theory of transport have
to be extended onto other area-preserving maps and Hamiltonian systems with two degrees
of freedom.

The results in this paper are supported mainly by controlled numerical calculations.
Problems with numerical calculations of periodic orbits with long periods are well known,
and we had to be very careful in checking continuity or smoothness of the fundjiongn).

We suspect that it would be extremely difficult to rigorously prove our results, but we believe
that the numerical evidence is sufficiently convincing.
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